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The numerical study presented in this work describes the direct and inverse mixed convection problems
in a slot-ventilated enclosure subjected to an unknown heat flux on one side. Particularly, the interaction
of internal natural convection with the cold ventilated flow leads to various flow fields depending on the
Richardson number, Reynolds number, and the functional form of the imposed boundary heat flux. Fluid
and heat transport structures across the enclosure are visualized by the streamlines and heatlines,
respectively. Subsequently, an iterative conjugate gradient method is applied such that the gradient of
the cost function is introduced when the appropriate sensitivity and adjoint problems are defined for a
domain of arbitrary geometries. In this approach, no a priori information is needed about the unknown
boundary heat fluxes to be determined. The accuracy of the heat flux profile solutions is shown to depend
strongly on the values of Reynolds number and flux functional forms. Effects of measurement errors on
the accuracy of estimation are also investigated. The present work is significant for the flow control
simultaneously involving the natural convection and forced convection.

� 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Combined forced and natural convection is often encoun-
tered in electronic cooling, room ventilation, fluid flows in
chemical reactors, cooling of large power plants, to name just
a few [1,2]. The interaction between a buoyancy-induced ther-
mal plume from heat sources and an externally driven cold
flow inside a cavity constitutes a typical configuration, where
the behavior of mixed convection has been investigated for dif-
ferent values of Reynolds number, Richardson number, fluid
properties, positions of heat source and ventilation port, and
geometries [3–20]. Three different regimes were observed,
namely, natural convection, comparable natural and forced con-
vection, and forced convection. Concomitantly, transitional,
oscillatory or multiple flows caused by the interaction between
forced and free convection have also been investigated [6–
10,12,14,15,18,19].

As expected, the aforementioned mixed convection in enclo-
sures could be well defined once the thermal conductivity, velocity
and temperature or heat fluxes are specified on the whole bound-
ary of the domain. This is called the direct mixed convection prob-
lem [1,2,19,21]. Inversely, the fluid flow and heat transfer within a
domain are not well defined if the velocity, temperature and heat
ll rights reserved.
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flux are not specified along some surface or arbitrary locations ly-
ing inside the domain. This is called the inverse problem, which is
of great importance from many practical points of view (analysis,
control and design) and has aroused an increasing interest during
the last few decades. Literature review shows that the existing
plentiful studies were, however, limited to the inverse heat con-
duction problem [22,23,42]. Comparing with the studies of inverse
conduction problem, inverse convection problem is more difficult
to investigate as the flow field is dynamically coupled with the
heat convection [24–29]. This is due to the fact that fluid flow
introduces new physics such as boundary layers and vortex forma-
tion, which in turn localizes the region where sensitive information
is contained.

In the present work, we examine the inverse heat transfer
problem in an enclosure simultaneously involving natural convec-
tion and forced convection, which is still unexplored. Contrary to
the mixed convection problem which consists of computing the
consequences of given causes, the inverse mixed convection prob-
lem is associated with the reversal of the cause-effect sequence
and consists of finding the unknown causes of known conse-
quences. The effects of mixed convection on the stability and
accuracy of the inverse solution should be analyzed in terms of
thermal Grashof number, Reynolds number, number and position
of sensors.

The next section presents the physical model of mixed con-
vection in an enclosure ventilated by two ports. Subsequently,
detailed derivation of the sets of sensitivity and adjoint equa-
tions used in the Conjugate Gradient Method [24–29] would
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Nomenclature

E cost functional/performance function
FED accuracy of estimation
g gravitational acceleration
Gr Grashof number
K CGM iteration loop
L size of the square enclosure
M number of sensors
P dimensionless pressure
Pr Prandtl number
ps conjugate search direction
Q dimensionless heat flux
Re Reynolds number
Ri Richardson number
T dimensionless temperature
U, V dimensionless velocity components
X, Y dimensionless Cartesian coordinates

Greeks
a step size for CGM
e small number

dT, dU sensitivity variables
r dimensionless standard deviation
s dimensionless time
C piecewise boundary
p, n, g adjoint variables
W stream function
H heat function
X domain

Subscripts
in, out inlet and outlet
kq, uq known and unknown heat fluxes
kt, ut known and unknown temperatures
m measurement
k known
u unknown

Superscript
* dimensional variable
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be presented concerning the combined forced and natural con-
vection. Numerical results, including fluid and heat transport
structures [19,30–35], will be presented next to show the ef-
fects of convection flow, boundary conditions and noisy data
on the convergence and accuracy of the inverse solutions.
(a) General geometry of mixed convection and inverse mixed convection 

(b) Schematic of the square cavity, the coordinate system and boundary conditions  
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Fig. 1. The geometry of the flow configuration under consideration along with the
coordinate system.
2. Combined forced and natural convection

Fig. 1(a) presents a general sketch of the enclosed domain
X with piecewise smooth and non-overlapped boundaries
Ckq, Cuq, Ckt, Cin, and Cout, satisfied with CkqtCuqtCkt = C.
The domain is of an arbitrary geometry, and the Cartesian
coordinates (x, y) with the corresponding velocity components
(u, v), are indicated herein. It is assumed that the dimension
in the z direction is large enough and the end effects on the
flow are negligible, i.e., fluid flow and heat transfer is two-
dimensional. The fluid is initially at rest and the uniform
temperature t0. At s* = 0, the boundaries Ckq, Cuq, Ckt, Cin,
and Cout are, respectively, subjected to the space-dependent
heat fluxes Q �k;Q

�
u, temperature tk, inflow (uin, tin) and outflow

(uout, tout), and the mixed convective flow is then initiated
and evolves. Non-slip boundary conditions are imposed over
the inner surfaces C of the domain. It should also be pointed
out that radiation effects were not included in this study,
since this would overly complicate the problem. In practical
terms, the results obtained here would apply to surfaces of
sufficiently low emissivity, so that the radiation effects rela-
tive to those of buoyancy and forced convection can be
neglected.

The fluid flow and heat transfer are governed by the conti-
nuity, Navier–Stokes and energy equations. The effect of ther-
mal buoyancy due to the heat input is taken into account
for the fluid flow inside the enclosure. The Boussinesq approx-
imations are applied for the density variations. The compress-
ibility work and the viscous dissipation terms are neglected
in the energy equation. With the foregoing assumptions, the
equations for the two-dimensional flow under consideration
are written in the conservative non-dimensional form, respec-
tively, as
r � U ¼ 0 ð1Þ
@U
@s þ U � ðrUÞ ¼ r � �Pþ 1

Re
rU

� �
� Gr

Re2 T � eg ð2Þ

@T
@s
þ U � ðrTÞ ¼ 1

RePr
r2T ð3Þ

The aforementioned non-dimensional equations were obtained
through introducing the following relations:
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ðX;YÞ ¼ ðx; yÞ=L; ðU;VÞ ¼ ðu;vÞ=u0; s ¼ s�=ðL=u0Þ ð4aÞ
P ¼ ðpþ q0gyÞ=½qðu0Þ2�; T ¼ ðt � t0Þ=Dt; Q ¼ Q�=q0 ð4bÞ

Correspondingly, the governing parameters are defined as

Pr ¼ m=aF; Gr ¼ gbDtL3=m2; Re ¼ u0L=m ð5Þ

where, the temperature potential Dt is given by q0L/k. The symbols
q, g, m, aF, and b denote, respectively, the density, gravitational
acceleration, kinematic viscosity, thermal diffusivity, and coefficient
of volumetric expansion. It may be noted here that in defining the
Reynolds number, Re, the length scale chosen is size of the enclo-
sure L (as shown in Fig. 1(b)). This allows the width of the inlet (out-
let) to appear in the boundary conditions. The relative magnitude of
the Grashof number Gr and Reynolds number Re, the Richardson
number Ri = Gr/Re2, determines which one of the two mechanisms
of flow is predominant.

As shown in Fig. 1(a), the corresponding boundary conditions
are written as

ðU;VÞ ¼ 0; ðX;YÞ�CkqtCuqtCkt ð6Þ
T ¼ TkðX;YÞ; ðX;YÞ�Ckt ð7Þ
� rT � n ¼ Q kðX; YÞ; ðX;YÞ�Ckq ð8Þ
� rT � n ¼ Q uðX; YÞ; ðX;YÞ�Cuq ð9Þ
U ¼ UinðX;YÞ; T ¼ T inðX; YÞ; ðX; YÞ�Cin ð10Þ

The sensitivity of the solution to the outflow boundary conditions
should be tested through the comparison of Dirichlet and Neumann
boundary conditions; typically, the zero gradient condition is com-
pared against specifying the same flow conditions at the outflow as
at the inflow. Slight discrepancies are felt only in the flow field near
the outflow boundary, while the effect on the flow and heat transfer
results over the rest of the computational domain are insignificant.
As a result, the following outflow boundary conditions are consid-
ered in the present work:

P þrsn � n ¼ 0; �rT � n ¼ 0; ðX;YÞ�Cout ð11Þ

where sn represents the stress tensor normal to the Cout. If the un-
known boundary condition Qu were known a priori, the fluid and
thermal flow across the system X can be obtained through solving
the aforementioned equations, i.e., direct mixed convection prob-
lem [1,2,19]. Additionally, the following initial conditions are also
employed:

UðX;Y ; s ¼ 0Þ ¼ 0; and TðX;Y; s ¼ 0Þ ¼ 0; ðX;YÞ�X ð12Þ

The streamlines and heatlines are the best choice to visualize
the paths followed by the fluid and heat flows [19,30–35]. Such
lines are defined, respectively, as the constant lines of the stream-
function (W) and heatfunction (H). The dimensionless forms can
be obtained

@W
@Y
¼ U; � @W

@X
¼ V ð13Þ

@H
@Y
¼ RePr UT � @T

@X
; � @H

@X
¼ RePr VT � @T

@Y
ð14Þ

The W and H fields are defined through its first order derivatives,
being thus important only differences in its values but not its level.
This relative nature is similar to that of the pressure field in incom-
pressible fluid flows. Thus, we have the freedom to state that

Wð0;0Þ ¼ Hð0; 0Þ ¼ 0 ð15Þ

As a heat transfer visualization technique, the use of heatlines is the
convection counterpart or the generalization of a standard tech-
nique (heat-flux lines) used in heat conduction. If the fluid flow sub-
sides (U = V = 0), the heatlines become identical to the heat-flux
lines employed frequently in the study of conduction phenomena
[31].
3. Inverse mixed convection problem

The aforementioned mixed convection problem associated
with the mathematical formulation given by Eqs. (1)–(12), in-
volves the determination of the velocity and temperature fields
in the enclosure, from the knowledge of the enclosure geome-
try, of the physical properties and of the initial and boundary
conditions. Appropriately formulated direct mixed convection
problems are mathematically classified as well-posed. The solu-
tion of a well-posed problem must satisfy the conditions of
existence, uniqueness and stability with respect to the input
data.

For the inverse mixed convection problem, we should deter-
mine the boundary heat flux Qu with the known boundary condi-
tions and the measured or designed temperatures due to the fact
that temperature field inside the domain can be easily measured
at various locations. Differing from direct problems, inverse prob-
lems are mathematically classified as ill-posed due to the fact that
the solution may not exist or may not be unique or stable. Actually,
a successful solution of an inverse convection problem generally
involves its reformulation as an approximate well-posed problem
and makes use of some kind of regularization (stabilization) tech-
nique. In the present work, a solution to the inverse mixed convec-
tion problem would be assumed existed in the sense of Tichonov
[22,23]. Particularly, we look for the boundary heat flux Qu that will
minimize the following error:

EðQ uÞ ¼
1
2

Z sf

0

XM

i¼1

½TðXi;Yi; sÞ � TmðXi;Yi; sÞ�2ds ð16Þ

where, T and Tm are the numerical-predicted and on-site-measured
temperatures at the sensor’s position, respectively. M is the total
number of sensors. Although only steady flow situation is consid-
ered in the present work, the time integration over the measure-
ment points makes the formula more general.

Admittedly, if Qu is a function of time only, not more than one
single sensor is needed to get a valid solution. For a non-uniform
heat flux of arbitrary form, a continuum set of sensors is required
in principle. Simultaneously, one should observe that the inverse
mixed convection problem in which the calculation of Qu is
achieved using known temperature measurements within the do-
main or at some boundary locations. The number of sensors, their
location and accuracy become crucial to the solution of the inverse
convection problem [28]. However, in the present work, attentions
are particularly paid on the effect of mixed convection on the in-
verse estimations. Thus, the measurement locations and sensors
have been maintained constant if there were no other special
illustrations.

The sequence of approximations for the unknown heat flux Qu

may be constructed following the steps of the conjugate gradient
method [24–27,29], according to QKþ1

u ¼ Q K
u þ aK psK , where a is

the step size and ps the conjugate search direction. The search
direction ps is related to the gradient of the cost functional E with
respect to Qu, whose function shape is not available for general
cases. The gradient of the cost functional E and the step size a must
be obtained, respectively, from the solution of the adjoint and sen-
sitivity problems described below.

3.1. Sensitivity problem

The main difficulty of the foregoing inverse problem is the cal-
culation of the gradient of the cost functional in the Cuq space. Let
us introduce the temperature sensitivity dT as the directional
derivative of T at Qu in the direction dQu, which is equal to

dT ¼ lim
e!0

TðQ u þ edQ uÞ � TðQ uÞ
e

ð17Þ
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where e is a small real number. The remaining variables can be done
similar to Eq. (17). Based on the definition of the sensitivity vari-
ables, it is straightforward to derive the following sets of sensitivity
equations, respectively, for continuity, momentum and temperature
sensitivities:

r�dU¼0 ð18Þ
@dU
@s
þU � ðrdUÞ¼r� �dPþ 1

Re
ðrdUÞ

� �
�dU � ðrUÞ� Gr

Re2 dT �eg ð19Þ

@dT
@s
þU � ðrdTÞ¼ 1

RePr
r2dT�dU � ðrTÞ ð20Þ

Additionally, the sensitivity variables satisfy the same initial and
boundary conditions as their direct problem counterparts. As a con-
sequence, the relevant boundary and initial conditions for the set of
sensitivity equations can be expressed as follows:

ðdU; dVÞ ¼ 0; ðX;YÞ�CkqtCuqtCkttCin ð21Þ
dP ¼ 0; ðX; YÞ�Cout ð22Þ
dT ¼ 0; ðX;YÞ�CkttCin ð23Þ
� rdT � n ¼ 0; ðX; YÞ�CkqtCout ð24Þ
� rdT � n ¼ dQ uðX; YÞ; ðX; YÞ�Cuq ð25Þ

dU
�!ðX;Y; s ¼ 0Þ ¼ 0 and dTðX; Y; s ¼ 0Þ ¼ 0; ðX;YÞ�X ð26Þ

These formulations illuminate that the driving force of the sensitiv-
ity problem is the heat flux increment dQu imposed at the boundary
Cuq.

3.2. Adjoint problem

The calculation of the gradient of the objective function requires
the appropriate evaluation of the adjoint operators to the sensitiv-
ity operators defined above. In an infinite-dimensional space, the
gradient of E must verify the formal equality

DdQu EðQ uÞ ¼ rEjdQ uh i ð27Þ

where the left-hand side is the directional derivative of E at Qu in
the direction dQu. The gradient of E may then be determined by a
set of adjoint equations as follows. Starting from Eq. (16), the direc-
tional derivative of E is

DdQu EðQ uÞ ¼
Z sf

0

XM

i¼1

½TðXi; Yi; sÞ � TmðXi; Yi; sÞ� � dTðXi;Yi; sÞds

ð28Þ
where all quantities are evaluated at the sensors’ positions
(Xm, Ym). It should be noted that the expression on the right-hand
side of Eq. (28) might be expressed using Dirac delta function as
an integral over surface and time [24,28]. Introducing the adjoint
temperature g, velocity n, and pressure p, it is possible to substi-
tute Eqs. (18)–(20) into Eq. (28) such that the directional deriva-
tive of E becomes

DdQu EðQ uÞ ¼
Z sf

0

Z
X
ðT � TmÞ � dT

XM

i¼1

dð r!� r!iÞdXds

þ
Z sf

0

Z
X

n
! @ dU

�!
@s
þ U
!� ðrdU

�!Þ þ dU
�! � ðrU

!Þ
"

þrdP I
!� 1

Re
r2 dU
�!þ Gr

Re2 dT � e!g

#
dXds

þ
Z sf

0

Z
X
p r � dU

�!h i
dXdsþ

Z sf

0

Z
X
g
@dT
@s
þ U
!� ðrdTÞ

�

þdU
�! � ðrTÞ � 1

RePr
r2dT

�
dXds ð29Þ
By employing integration in the last three terms appearing on
the right-hand side of Eq. (29), utilizing the initial and boundary
conditions of the sensitivity problem for dT, and also requiring that
the coefficients of dT in the resulting equation vanish, the following
adjoint problems is then obtained:

r�n¼0 ð30Þ
@n
@s
þU � ðrnÞ¼r� p� 1

Re
ðrnÞ

� �
þn � ðrUÞT þg �rT ð31Þ

@g
@s
þU � ðrgÞ¼� 1

RePr
r2gþ Gr

Re2 n �eg�ðT�TmÞ
XM

i¼1

dðr�riÞ ð32Þ

The corresponding initial and boundary conditions are described as

ðnX ; nY Þ ¼ 0; ðX;YÞ�CkqtCuqtCkttCin ð33Þ
p ¼ 0; ðX;YÞ�Cout ð34Þ
g ¼ 0; ðX;YÞ�ckttCin ð35Þ
� rg � n ¼ 0; ðX; YÞ�ckqtcuqtCout ð36Þ

n
!ðX;Y; s ¼ sf Þ ¼ 0; gðX; Y; s ¼ sf Þ ¼ 0; ðX;YÞ�X ð37Þ

The set of equations (30)–(32) defines the adjoint problem, to-
gether with the conditions imposed on the adjoint variables on
the boundary of X excluding the section Cuq and at time sf. It
should be mentioned that the transformation of temporal variable
s’ = sf – s has to be conducted at first, in order to solve the adjoint
equation with the ‘‘end condition” at the physical time sf.

@ n
!

@s0
� U
!� ðr n

!Þ ¼ r � �p I
!þ 1

Re
ðr n
!Þ

� �
� n
!� ðrU

!ÞT � g � rT ð38Þ
@g
@s0
� U
!� ðrgÞ ¼ 1

RePr
r2g� Gr

Re2 n
!� e!g

þ ðT � TmÞ
XM

i¼1

dð r!� r!iÞ ð39Þ

Through the aforementioned transformation, the adjoint problem
becomes an initial value problem in time s0, and the relevant initial
conditions are

nðX; Y; s0 ¼ 0Þ ¼ 0 and gðX;Y ; s0 ¼ 0Þ ¼ 0; ðX;YÞ�X ð40Þ

Finally, only one term would remain when Eqs. (30), (38), and (39)
were balanced,

DdQu EðQ uÞ ¼
Z sf

0

Z
Cuq

gdQ u dAds ¼ gjdQ uh i ð41Þ

Observing from Eqs. (27) and (41), the gradient of the objective
function is equal to the adjoint temperature at the surface where
the unknown heat flux is being sought, that is,
rE ¼ g ð42Þ

That holds true in general for an arbitrary heat flux Qu(Cuq, s). Addi-
tionally, the only driving force of the adjoint problem is the devia-
tion (error) of the predicted temperature T from the desired or
measured temperature Tm. As a result, if the objective heat flux
were achieved, the T would equal to Tm at the sensor locations.

4. Numerical methodology and implementation

4.1. Implementation of the direct convection problem

Since the flow governed by Eqs. (1)–(3) together with the initial
and boundary conditions (6)–(12) is known to be parabolic in time
but elliptic in space, the solution for the problem can only be
marched in time, and iterative procedures must be employed to
obtain the solution in the spatial domain.
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Finite volume method (FVM) is applied to discretize the govern-
ing equations on a staggered grid system [36]. In the course of dis-
cretization, the third-order deferred correction QUICK scheme and
second-order central difference scheme are, respectively, are
implemented for the convection and diffusion terms [37,38]. The
SIMPLE algorithm was chosen to numerically solve the governing
differential equations in their primitive form [36]. To obtain better
convergence properties, the unsteady terms in these equations
were implicitly treated and hence approximated by backward dif-
ferencing. For each time step, the discretized equations were
solved by a line-by-line procedure, combining the tri-diagonal ma-
trix algorithm (TDMA) and the successive over relaxation (SOR)
iteration.

The time interval, first set at a relatively small value from 10�4

to 10�3 depending on Re, Gr, and Pr is successively enlarged. During
the program tests, a systematic grid independence study was con-
ducted, and then the final uniform grid resolution of 51 � 51 was
selected at the balance between the calculation accuracy and the
speed for fluid flow in a square vented enclosure.

The convergence criteria are based on maximum errors in
global mass and energy imbalances. Convergence was ensured
when the maximum errors become less than 10�4. The current
numerical technique has been very successfully used and vali-
dated in a series of recent papers, including transient conjugate
heat transfer [38], conjugate natural convection [21,31,38], dou-
ble diffusive natural convection in gaseous and porous enclo-
sures [31–34], double diffusive mixed convection [19], and
turbulent forced convection in slot-ventilated rooms [39,40]. To
further validate the present numerical code, mixed convection
in a slot-ventilated enclosure has been numerically analyzed.
One of the initial numerical studies on mixed convection in this
enclosure was performed by Papanicolaou and Jaluria [8], and
Hsu and Wang [13]. For this comparison, solutions presented
in Table 1 are obtained for Re = 100, Gr/Re2 = 1, Pr = 0.7. Observ-
ing from Table 1, the agreement between the present study and
other published results is fairly good, and the maximum devia-
tion is no more than 3%.

4.2. Implementation of the sensitivity and adjoint problems

Since the sensitivity flow governed by Eqs. (18)–(20) together
with the initial and boundary conditions (21)–(26) and the adjoint
flow governed by Eqs. (30), (38), and (39) together with the condi-
tions (33)–(36) and the initial condition Eq. (40) are similar to the
direct flow, the same convective and diffusive difference schemes
used in the implementation of the direct problem are also used
in the implementation of the sensitivity and adjoint problems.
Additionally, the SIMPLE algorithm is also adopted provided that
the set of sensitivity and adjoint equations and boundary condi-
tions were solved sequentially.

Due to the temperature and velocity solutions of the direct
problem appear in the sensitivity and adjoint problems, the
whole history of the solution for direct problem should be
stored for transient situation. It is convenient to carry out the
finite volume solution of the sensitivity and adjoint problems
with same mesh and time steps as those used to solve the di-
rect problem.
Table 1
Comparison of benchmark solutions in slot-ventilated enclosures.

[8] [13] Present work

Nu 3.0725 3.1134 3.1105
Tmax 0.3623 0.3473 0.3528
Wmax 1.3771 1.3676 1.3700
4.3. Conjugate gradient method

After having obtained an analytical expression for the exact gra-
dient of the cost functional, any of the standard functional minimi-
zation techniques can be used for solving the above defined
optimization problem. The gradient of E as was calculated in Sec-
tion 3.2 is used in conjunction with the conjugate gradient method
[24–28].

As mentioned above, the conjugate search direction ps and the
step size a should be defined and calculated. The optimal step size
aK is obtained by minimizing the cost functional E with respect to
the scalar aK, and it has the following formulation:

aK ¼ �

R sf
0

PM
i¼1
½TðXi; Yi; sÞ � TmðXi; Yi; sÞ�dTðXi;Yi; sÞds

R sf
0

PM
i¼1
½dTðXi;Yi; sÞ�2ds

ð43Þ

where, dT is determined by the convergent sensitivity field. The
conjugate search direction ps should require the gradient of cost
functional given by Eq. (42), and it can be obtained as follows:

psK ¼
�rEK ; K ¼ 0

�rEK þ rEK�rEK�1 jrEKh i
krEK�1k2 � psK�1; K P 1

8<
: ð44Þ

The summary of CGM optimization procedure is presented in
Fig. 2, and it is used to minimize the cost functional of Eq. (16).
The present algorithm is driven by the thermal solution, i.e., the
fields of T, dT, and g; simultaneously, these thermal fields are
dynamically calculated with the corresponding flow fields of U,
dU, and n as illustrated in aforementioned sections.

Since the adjoint temperature field is zero at the final time sf,
the conjugate direction also vanishes and the estimated value of
the heat flux at sf is always equal to the initial guess value.
Although the conjugate gradient method can be modified to allevi-
ate this difficulty [25], it is not the main purpose of this study to
examine the inverse solution at sf. The discussion will be restricted
to heat fluxes that are zero at sf and focus on the effects of convec-
tion on the convergence of the algorithm.
K = K+1 

Step size αK from equation (43) 

Qu
K+1 = Qu

K + αKpsK

Solve the Sensitivity problem to obtain δT

Fig. 2. The conjugate gradient method for inverse mixed convection problem. The
convergent criterion eD depends on the specific situations.



F.-Y. Zhao et al. / International Journal of Heat and Mass Transfer 52 (2009) 4400–4412 4405
4.4. Discrepancy principle for stopping criteria

Actually, temperature data recording from the sensors always
contain errors. A dimensionless random noise level r (r = r*/Dt)
was added to the simulated exact temperature data (average one
in practice) to generate the measured temperature data, that is,

Tm ¼ Texact þxr ð45Þ

where r is the standard deviation of the measurement errors which
is assumed to be the same for all measurements, and x is the
Gaussian distributed random number. The value of x is chosen over
the range of –2.576 6x 6 + 2.576, which represents the 99% confi-
dence bound for the temperature measurement. In the present cal-
culation, the noise level r takes values of 0.00, 0.005, 0.01, and 0.05,
which correspond to zero, 1.25%, 2.5%, and 12.5% relative measure-
ment errors, respectively.

If the problem involves no measurement errors, the following
traditional condition can be used:

EðQ K
uÞ < e ð46Þ

where e is a small specified number, and can be used as the stop-
ping criterion. However, the observed temperature information
contains measurement errors. As a result, the inverse solution will
tend to approach the perturbed input data, and the solution will
exhibit oscillatory behavior as the number of iterations is in-
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Fig. 3. Calculated contours of streamfunctions (top), isotherms (middle) and heatfunc
Hmax = 0.229, Hmin = �0.407, Tmax = 0.278; (b) HFP2, Wmax = 0.030, Wmin = �0.097, H
Hmax = 0.192, Hmin = �0.307, Tmax = 0.239.
creased [22,23]. Numerical experiments have shown that it is
advisable to use the discrepancy principle for terminating the iter-
ation process in the regular method. Assuming TK� Tm = r, the dis-
crepancy principle that establishes the value of the stopping
criteria e can be obtained from Eq. (16). For steady situation, it
can be written as

EðQ K
uÞ < e2 ¼ 1

2

XM

i¼1

r2 ð47Þ

If the function E has a minimum value that is larger than e2, the
following criterion is used to stop the iteration [25,29]:

EðQ Kþ1
u Þ � EðQ K

uÞ < e1 ð48Þ

where e1 is a prescribed small number depending on the specific
situations.
5. Results and discussion

The enclosure considered here is shown in Fig. 1(b), with aspect
ratio H/L = 1.0 and with two ventilation ports of dimensionless
height 0.1. The fluid is air with a Prandtl number Pr = 0.72. The en-
trance ventilation port is kept at the top of the left vertical wall,
while the exit port on the bottom of the same side. At the inflow
opening, uniform flow conditions are assumed, i.e., Uin = 1.0 and
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Tin = 0.0; For the boundary condition at the outflow, all the gradi-
ents in the horizontal direction are taken as zero, to represent
developed flow and thermal fields. The left vertical wall of the
square enclosure is adiabatic, Qk = 0. The top and bottom walls
both are maintained at constant and uniform temperature Tk = 0
and the right wall is imposed by the spatially varying heat flux
Qu(Y) [38,41,42], thus giving rise to free convective fluid flows in
the enclosure. Simultaneously, the internal free convection would
be interacted with the external flow.

The direct mix convection is investigated firstly. Streamlines
and heatlines will be adopted to visualize the fluid flow and heat
transport. Effect of heat flux profiles on the flow structure and heat
transfer performance is presented and analyzed. Variation Grashof
and Reynolds numbers obtains different flow patterns covering
forced convection, mixed convection and natural convection. The
transition process between forced dominant convection to natural
dominant convection has been represented by a critical diagram of
the form in terms of Reynolds number and Grashof number.

Inverse mixed convection problem in the present work is to
determine the unknown heat flux Qu(Y) on the right wall, from
temperature measurements Tm taken at the sensor’s position.
When the steady mixed convection state is achieved, the temper-
ature measurements taken at the sensor’s locations are conducted.
The aforementioned Conjugate Gradient Method will be adopted to
solve the inverse mixed convection problem.
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Fig. 4. Calculated contours of streamfunctions (top), isotherms (middle) and heatfunct
Hmax = 0.376, Hmin = �0.260; (b) Ri = 1.10, Wmax = 0.006, Wmin = �0.095, Hmax = 0
Hmin = �0.372.
Inverse solutions are firstly obtained from exact simulated data
(r = 0). The effects of Richardson number Ri, Reynolds number Re,
type of boundary heat flux on the inverse mixed convection solu-
tions would be discussed in the following sections. Effects of ran-
dom errors on the inverse solutions would be considered
subsequently. In this work, all CGM computations start from
Q0

u ¼ 0 as initial guess for the heat flux. Additionally, the sensors
are assumed to be uniformly placed by a layer of 50 thermocouples
at (Xm = 0.90, 0.00 6 Ym 6 1.00), where is adjacent to the unknown
boundary conditions.

5.1. Direct mixed convection and its visualization

As illustrated in these figures, the streamfunction is used to
identify the sense and magnitude of the fluid circulation. The
coordinates are chosen such that counterclockwise (or clockwise)
movement will be associated with positive (or negative) W. Sim-
ilar relations are set for heat flow and heatfunction H [19,30–35].
The intervals of these computed streamlines, isotherms and heat-
lines are Du = (umax � umin)/16, where u stands for W, T or H. Be-
cause it is not possible to include the results for all boundary
conditions at all Reynolds and Richardson numbers due to space
limitation, some representative streamlines, isotherms and heat-
lines are shown for various boundary heat flux, Re and Ri in Figs.
3–6.
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5.1.1. Effect of heat flux profiles on direct mixed convection
The following well-defined functions of heat flux Qu have been,

respectively, employed along the right wall:

Q uðYÞ¼�sinðpYÞ; 06Y61 ðHFP1; semi-cycle sinusoidal functionÞ ð49aÞ

Q uðYÞ¼
�1; 0:26Y60:8
0; Y 2½0;0:2�[ ½0:8;1:0�

�
ðHFP2; step functionÞ ð49bÞ

Q uðYÞ¼
�2Y ; 06Y60:5
2Y�2; 0:56Y61:0

�
ðHFP3; triangular functionÞ ð49cÞ

when Re and Ri maintain at 100 and 2.00, respectively, the fluid and
heat transport structures are plotted in Fig. 3 as functions of heat
flux profiles. A similar flow structure, the cold external flow squeez-
ing by the counter-clockwise flow eddy, is observed under the heat
flux conditions of HFP1, HFP2, and HFP3. Also, the heat transport
structures illuminated by the heatlines tend to be similar. The value
of Wmax measuring the flow intensity of the counter-clockwise eddy
achieves the minimum as the HFP3 imposes. This is due to the fact
that their total heat flow rates (j

R 1
0 QuX¼1dY j) decrease (0.636, 0.6,

and 0.5 for HFP1, HFP2, and HFP3, respectively). Simultaneously,
the maximum temperature across the system Tmax attains mini-
mum as the HFP3 imposes. Here should be noted that, the value
of Tmax under HFP2 situation exceeds that of HFP1, which results
from the fact that the heat flux distributes more concentrated in
the former case.
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5.1.2. Effect of Grashof and Reynolds numbers on direct mixed
convection

Due to the little differences between the flow patterns observed
in Fig. 3, only the HFP1 is imposed on the right wall. The values
chosen for the Reynolds number were in the range of 50–500, these
being in the laminar regime. At each of these values of Re, the var-
iation of Grashof number expressed in terms of the Richardson
number Ri was varied from 0 to 6.0, encompassing a range of dom-
inating forced convection to dominating natural convection.

Analysis of complex mixed convection flow physics in the enclo-
sure is difficult due to the interaction between the forced and natural
convection. Intuitive inferences are sometimes contrary to the real-
ity. Nevertheless, the air flow and heat transport structures for all the
simulations were closely scrutinized, typically presenting in Figs. 4–
6. At any Re, for Ri approaching zero, forced convection dominates
and the major flow is clockwisely rotating from the inlet to the out-
let. The recirculation zones expand towards the right wall with
increasing Reynolds number. Particularly, diffusive thermal trans-
port shown in Fig. 4(a) has been passively strengthened, resulting
the heat directly flows toward the outlet, typically shown by the
heatlines in Figs. 5 and 6 (a). Correspondingly, there are large ther-
mal gradients adjacent to the heat source.

For higher Gr/Re2, the buoyancy effects are much stronger and
lead to large recirculating cells, while the region that is affected
by the source becomes smaller. Such as Ri = 4.0, presented in Figs.
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4–6(c), the right counter-clockwise rotating cell squeezes the left
clockwise rotating cross flow. Additionally, the formation of ther-
mal plume also becomes evident as Ri increases. The development
of two distinct regions with large temperature gradients has also
been noticed. One of these seems to surround the heat source,
while the other one, at a lower temperature level, appears as strat-
ified and horizontal layer of air, almost occupying right half enclo-
sure. These regions become thinner when Ri is increased, as
expected from a greater upward buoyancy force. It is also noted
that the cold external flow does not simply pass through the enclo-
sure, its movement rightward toward the source increases with the
Reynolds number. This effect is to enhance the recirculation due to
buoyancy by a shearing force while getting heated as it flows
though the enclosure. The heat is thus transferred from the recircu-
lating flow to the external flow stream by diffusion. This is also
demonstrated by the recirculating heatline structures [31].

For intermittent Gr/Re2, the buoyancy effect and the forced flow
effect could be comparable, the interaction between external cold
flow and internal thermal plume could results in the weak inter-
face shear force, and the heat transfer rate unexpectedly decreases
with increasing Ri, as presented in Fig. 7(a). Simultaneously, the
heat dissipation of this system could be impaired, observing from
fact that the Tmax peaks as Ri equals to 1.10, 0.65, 0.55, 0.50, and
0.30, respectively, when Reynolds number is maintained at 50,
100, 200, 300, and 500. When thermal plume increases in strength
and size, i.e., Ri exceeds the critical point (discussing later), the
heat transfer rate could be promoted again, where natural convec-
tion heat transfer is dominated.

Actually, the relations between the natural convection and forced
convection could be determined. Aforementioned convective mass
and heat transport structures, typically shown in Figs. 4–6(b), illumi-
nate that the maximal competition between the internal natural
convection and external forced convection could result in minimal
heat transfer rates. The effect of the Reynolds and Grashof numbers
on the convective heat transfer then could be represented by a crit-
ical diagram of the form shown in Fig. 8, where the corresponding
heat transfer rate attains the lowest value. The general linear fitting
correlation of the form is expressed as

Re ¼ 5:346þ 0:0056Gr ð50Þ

As expected, the critical Grashof number increases with the Rey-
nolds number. Physically, internal natural convection invigorates
in order to accommodate with the strengthened external forced
convection. Particularly, the transition from the forced convection
dominated flow to the natural convection dominated flow is clearly
seen in Fig. 8, and the former regime beyond the straight line, while
the latter regime below it.

5.2. Inverse mixed convection and its visualization

In the case of the inverse mixed convection problem, the wall
heat flux Qu will be predicted from knowledge of the M = 50
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ig. 9. Effect of Reynolds and Richardson numbers on the inverse mixed convection
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temperature measurements taken along the vertical line Xm = 0.90,
0.00 6 Ym 6 1.00. In other words, the Tm (Xm = 0.9, 0 6 Ym 6 1) ob-
tained from the aforementioned direct simulation is simulated as
the measurements. The direct, sensitivity, and adjoint problems
described earlier are solved and combined with CGM. The stop cri-
terion is set equal to 10�6. The efficiency and accuracy of the pres-
ent inverse analysis for estimating the spatially varying function of
an unknown wall heat flux Qu at the right wall can be examined
from the following figures. The accuracy of the estimation is quan-
tified by the following definition of estimation error:

FED ¼ kQu � Qexactk2

kQexactk2 ð51Þ

olution for HFP1, and r = 0. ( ) Re = 50, Ri = 0.00, FED = 1.23 _ 10_6, K = 3; ( )
e = 50, Ri = 1.10, FED = 2.61 � 10�6, K = 4; ( ) Re = 50, Ri = 4.00, FED = 1.86 � 10�5,
= 5; ( ) Re = 200, Ri = 0.00, FED = 4.64 � 10�5, K = 5; ( ) Re = 200, Ri = 0.55,

ED = 6.59 � 10�5, K = 12; ( ) Re = 200, Ri = 4.00, FED = 4.32 � 10�4, K = 8; ( )
e = 500, Ri = 0.00, FED = 1.02 � 10�4, K = 8; (A) Re = 500, Ri = 0.30,
ED = 7.04 � 10�3, K = 98; (B) Re = 500, Ri = 4.00, FED = 6.38 � 10�4, K = 12.
5.2.1. Effect of mixed convection states
Observing from Figs. 9–11, the unknown heat flux profiles have

been recovered well under different flow states. However, after
clearly securitization and comparison, the accuracy of estimation
is generally decreased with increasing Reynolds number, either
forced convection (Ri = 0) or natural convection dominated flow
(Ri = 4). Boundary heat flux can be recovered with less iterations
of CGM when the Reynolds number is no more than 200. However,
more CGM iterations are required to obtain the correct profile and
amplitude as Re increases up to 500. Observing from the heatline
transport structures illuminated in Fig. 4–6, more heat has been
transported to the outlet with increasing Reynolds number, which
has weakened the temperature sensitivities where the tempera-
ture sensors are located.
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Fig. 10. Effect of Reynolds and Richardson numbers on the inverse mixed
convection solution for HFP2, and r = 0. ( ) Re = 50, Ri = 0.00, FED = 3.56 � 10�2,
K = 86; ( ) Re = 50, Ri = 1.10, FED = 3.57 � 10�2, K = 64; ( ) Re = 50, Ri = 4.00,
FED = 3.55 � 10�2, K = 53; ( ) Re = 200, Ri = 0.00, FED = 3.50 � 10�2, K = 78; ( )
Re = 200, Ri = 0.55, FED = 3.61 � 10�2, K = 100; ( ) Re = 200, Ri = 4.00,
FED = 3.58 � 10�2, K = 46; ( ) Re = 500, Ri = 0.00, FED = 3.49 � 10�2, K = 29; (A)
Re = 500, Ri = 0.30, FED = 4.93 � 10�2, K = 36; (B) Re = 500, Ri = 4.00,
FED = 4.10 � 10�2, K = 32.
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Fig. 11. Effect of Reynolds and Richardson numbers on the inverse mixed
convection solution for HFP3, and r = 0. ( ) Re = 50, Ri = 0.00, FED = 6.47 � 10�4,
K = 16; ( ) Re = 50, Ri = 1.10, FED = 5.58 � 10�4, K = 15; ( ) Re = 50, Ri = 4.00,
FED = 6.03 � 10�4, K = 22; ( ) Re = 200, Ri = 0.00, FED = 7.86 � 10�4, K = 10; ( )
Re = 200, Ri = 0.55, FED = 6.39 � 10�4, K = 16; ( ) Re = 200, Ri = 4.00,
FED = 7.00 � 10�4, K = 13; ( ) Re = 500, Ri = 0.00, FED = 1.18 � 10�3, K = 9; (A)
Re = 500, Ri = 0.30, FED = 1.17 � 10�3, K = 20; (B) Re = 500, Ri = 4.00,
FED = 3.34 � 10�3, K = 11.
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Fig. 12. The effect of noise level r on the inverse estimating HFP3 with Re = 200 and
Ri = 0.55. (a) Estimated heat flux as a function of CGM iterations with constant level
r = 0.01; (b) estimated heat flux as a function of standard deviation, and (b1)
r = 0.00, FED = 6.39 � 10�4, K = 16; (b2) r = 0.005, FED = 1.14 � 10�3, K = 27; (b3)
r = 0.01, FED = 2.58 � 10�3, K = 14; (b4) r = 0.05, FED = 7.18 � 10�3, K = 6; (b5)
r = 0.10, FED = 1.40 � 10�2, K = 4.
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Differing from the monotonic functions between FED and Rey-
nolds number, the accuracy of inverse convection calculation al-
most varies little with Richardson numbers. Actually, the
strength of internal natural convection hardly changes the thermal
boundary layer structures adjacent to the right wall; overall esti-
mation of boundary heat fluxes is thus less affected by the varia-
tion of Richardson number. Additionally, FED values were
achieved a bit higher in transitional flow regime for most of the
studied cases (Grashof number and Reynolds number satisfying
Eq. (50)), where a certain loss of accuracy exists as interaction be-
tween forced convection and free convection builds up and reduces
the sensitivity of the algorithm.

5.2.2. Effect of unknown heat flux profiles
These heat flux profiles imposed on the active boundary,

namely, the step, triangular and sinusoidal functions have been
respectively depicted in Figs. 9–11. Comparing these results with
identical governing parameters, the accuracy of the inverse solu-
tion for step heat flux is evidently lower than that of other func-
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tions. Essentially, the step flux (HFP2) with Fourier coefficients in-
versely proportional to n could be recovered more difficult than the
triangular flux (HFP3), with Fourier coefficients inversely propor-
tional to n2. Furthermore, these fluxes with a spectrum involving
many frequency components, such as step function and triangular
function, can be reproduced more difficult than those of single fre-
quency such sinusoidal functions (HFP1). As a result, the accuracy
of the inverse solution illuminated in Fig. 9 is generally achieved
higher, with less CGM iterations, than those presented in Figs. 10
and 11.

5.2.3. Effect of measurement errors
In practical experimental situations, it is expected that some er-

rors will be introduced into the measurements. The simulated
measurements containing random measurement errors have been
generated from Eq. (45). When inverse mixed convection problems
are solved using these noisy data, the iterative regularization effect
of the conjugate gradient on the solution can be detected just as
well as in conduction, and used with much profit to optimize the
final result [23]. That has been demonstrated evidently in
Fig. 12(a), where a reasonably accurate solution could be obtained
after 14 CGM iterations for estimating HFP3 with r = 0.01. The
solution obtained after 20 and 30 CGM iterations separately, when
the high frequency components of the noises embedded in the data
are recovered, appears far less satisfactory in comparison. This fea-
ture allows the satisfactory prediction of an unknown heat flux
from noisy temperature data, by stopping the iteration process be-
fore the undesirable components of the noise are recovered.

It is observed from Fig. 12(b) that the convergence of the solu-
tion strongly depends on the frequency of the Tm data. The conver-
gence speed of the inverse solution slows down as frequency
increases. Some bias remains in the solution, and it could be re-
duced by taking the sensors closer to active boundary, but at the
expense of a greater sensitivity to the higher noise frequency com-
ponents [28]. Fig. 12(b) reveals that the accuracy of estimation
deteriorates as the noise level increases, but the results are still
good in all these situations.
6. Conclusions

Direct and inverse mixed convection problems have been inves-
tigated together in the present work. The finite-volume method
and pressure-based SIMPLE algorithm are adopted to solve the di-
rect, sensitivity and adjoint problems by enforcing global mass
conservations. Estimation of boundary heat fluxes is conducted
by employing the Fletcher–Reeves conjugate gradient method.

The fluid and heat transports, affected by the Reynolds number,
Richardson number and functional forms of boundary heat fluxes,
have been vividly analyzed by streamlines and heatlines, respec-
tively. Visualization results thus provide vigorous means to discuss
the interaction between external forced convection and internal
natural convection. Flow and heat transport structures are less af-
fected by the heat flux profiles. Flow states of mixed convection,
including forced convection dominated, transitional flow, and nat-
ural convection dominated, are delineated by Reynolds and Rich-
ardson numbers, the critical correlations are produced in terms
of minimum heat transfer rates, where the heat dissipation of this
system could be impaired greatly.

Concerning the inverse mixed convection problem, the accuracy
of solution and the sensitivity of the algorithm generally reduce
with increasing Reynolds number, and tend be affected little by
Richardson number, although more CGM iterations are needed
for inverse estimation at the transitional flow regime.

Boundary heat fluxes with a spectrum involving many fre-
quency components (step function HFP2 and triangular function
HFP3) are reproduced more difficult than those of single frequency
(sinusoidal function HFP1). Stable solutions may be obtained from
noisy data by stopping the iteration process before the high fre-
quency components of the random noises start to affect signifi-
cantly the inverse solution. The accuracy of heat flux estimation
and the convergence speed of CGM both deteriorate as the stan-
dard deviation of temperature measurement increases.

Without any a priori information, the developed algorithm and
procedure are capable of predicting an arbitrary heat flux function
from temperature measured by sensors located within the cavity.
The developed analysis for the calculation of the gradient of the
cost functional is general and can be applied to other mixed con-
vection control or re-construction problems. Additionally, other
extensions, including inner heat sources and real-time determina-
tion of unknown sources, are currently under investigations.
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